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Abstract
By extending the notion of states to functionals acting on the space of
observables we obtain a well-defined complex spectral decomposition for
the time evolution of quantum-decaying systems, where Gamov states play
a fundamental role. It is shown that Gamov vectors are well-defined state
functionals and, therefore, they stand on the same footing as plane waves.

PACS numbers: 03.65.Ta, 03.65.Db, 05.30.−d, 21.60.−n

1. Introduction

The study of decaying systems was decisive for establishing quantum mechanics as the theory
of microscopical processes. Indeed, it was the seminal paper of Gamov [1] which showed
for the first time that quantum mechanics could properly describe the classically forbidden
penetrability of a particle through a barrier. Soon afterwards Gamov vectors were introduced as
outgoing ‘eigenvectors’ of the Schrödinger equation. These were related to resonances of the
system. The corresponding complex ‘eigenvalues’ z0 provided the parameters that determine
the resonances, i.e. Re(z0) is the position and −2 Im(z0) is the width of the resonance [2].
This theory was, and still is, very appealing since it describes resonances within the same
framework as bound states [3]. However, Gamov states are entities which do not belong to
quantum mechanics since they cannot be normalized and,perhaps even worse,provide complex
probabilities. These features marked a downturn in the use of Gamov vectors, particularly
in scattering theory [4], although still some work was done in the subject (see, e.g., [5]).

The theory received new impetus when it was shown that one could ‘renormalize’ Gamov
vectors [6] to form a complete set of states in a space which is not the Hilbert space [7, 8].
New techniques and computing facilities made it possible to carry out that renormalization
very conveniently [7–11] and since then Gamov vectors have increasingly been used in
various fields of microscopic physics [12–14]. One evaluates all resonances as the poles of
the S-matrix but gives physical meaning only to very narrow resonances, for which the
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imaginary parts of the probabilities (including transition probabilities and cross sections) are
negligible [14]. But the fact remains that since Gamov vectors do not belong to Hilbert space
they cannot be included in the domain of ordinary quantum mechanics. This can be readily
shown (in a heuristic way) by noting that if H is a self-adjoint Hamiltonian with an assumed
complex eigenvalue z0, then the corresponding eigenvector |f0〉 satisfies

H |f0〉 = z0|f0〉. (1)

Conjugating this equation one obtains4

〈f0|H = z0〈f0| (2)

that is

(z0 − z0)〈f0|f0〉 = 0. (3)

Since z0 is complex z0 �= z0 and therefore 〈f0|f0〉 = 0. Thus the ‘norm’ of the Gamov
vectors is zero, that is they do not belong to the Hilbert space. Still one can define a norm by
introducing an associated vector |f̃ 0〉 such that [15]

〈f̃ 0|H = z0〈f̃ 0| (4)

to get

(z0 − z0)〈f̃ 0|f0〉 = 0 (5)

and one can thus define the ‘norm’ of the Gamov vector as

〈f̃ 0|f0〉 = 1. (6)

This is the normalization proposed in [6, 7, 9–11], which leads to a metric where the Hilbert
internal product φφ = |φ|2 must be substituted by the Berggren internal product φ2, i.e. [7]

〈f̃ 0|f0〉 =
∫
φ2 dx = 1. (7)

But this definition of the norm leaves the question open whether the probability density is the
standard one, i.e. |φ(x)|2, or that corresponding to the Berggren metric, i.e. φ(x)2. In the first
case the probability diverges while in the second complex probabilities are obtained.

There have been several attempts to give a physical interpretation to the imaginary part
of the probability (see, e.g., [16, 17]), but limitations to such interpretations have always been
found [18]. In fact these apparent solutions take the problem out of the realm of quantum
mechanics, introducing notions which are alien to this theory. Moreover, none of the solutions
presented so far regarding this problem can be considered definitive, as shown recently in [19].

In this paper we will present a formalism to treat Gamov resonances within a rigorous
quantum mechanical framework5 devoid of any regularization procedure. In order to give a
general mathematical structure to Gamov vectors, they will first be defined as functionals over
the space of pure states, which is an approach similar to that used to define plane waves6. We
will study the problems presented by this formalism. This study will help us to develop a
better treatment of these objects in the second step.
4 We use an overline to denote a complex conjugate operation.
5 Note that plane waves are also outside the Hilbert space. In this paper, the word ‘rigorous’ means ‘as rigorous as
quantum mechanics with plane waves normalized to Dirac’s deltas’, i.e. as rigorous as scattering theory.
6 An ordinary plane wave with energy ω can be symbolized as the ket |ω〉 or the bra 〈ω|. It is then clear that
these objects do not belong to the Hilbert space, since the orthonormality relation 〈ω|ω′〉 = δ(ω − ω′) implies
〈ω|ω〉 = ∞. Nevertheless if |φ〉 is a ket such that it is well behaved at infinity, 〈ω|φ〉 is well defined, and since
〈ω|(α|φ〉 + β|φ′〉) = α〈ω|φ〉 + β〈ω|φ′〉, then 〈ω| can be considered as a linear functional over the ket space. Gamov
states are of the same nature as plane waves.
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A technique to deal with problems involving continuous spectra, and which defines
generalized states and generalized observables, was introduced in [20]. This technique was
used with success to study quantum decaying problems introducing an approach to equilibrium
in statistical quantum mechanics [21]. It was also successfully used to study the phenomenon
of decoherence [22, 23]. Here we will apply the same technique to solve the problems
associated with Gamov vectors.

In section 2 we consider Gamov vectors as functionals acting on pure states and list
the problems introduced by this assumption. In section 3 generalized states are defined as
functionals acting on operators representing observables. These generalized states will be
used to obtain a real spectral decomposition of the time evolution of the system in section 4.
In section 5 a complex spectral decomposition is presented. In this last decomposition Gamov
vectors appear naturally as terms of the expansion and as eigenvectors of the Liouville–von
Neumann superoperator. In section 6 an application will be presented, and the conclusions
are given in section 7.

2. Pure states and Gamov vectors

Let us consider a Hamiltonian H0 corresponding to free particles with continuous spectrum
[0,∞). We represent by |ω〉 (〈ω|) the right (left) generalized eigenvector of H0 with
eigenvalueω

H0|ω〉 = ω|ω〉 〈ω|H0 = ω〈ω| 0 � ω < ∞. (8)

We also assume that the right and left eigenvectors form an orthogonal complete system,
as usual [24], i.e.

I =
∫ ∞

0
dω |ω〉〈ω| 〈ω|ω′〉 = δ(ω − ω′) (9)

where I is the identity operator.
The eigenvectors of H0 form the basis of what we will call the ‘H0 representation’ of the

quantum system

H0 =
∫

dωω|ω〉〈ω|. (10)

The full Hamiltonian H of the interacting system will be

H = H0 + V =
∫

dωω|ω〉〈ω| +
∫

dω
∫

dω′ Vωω′ |ω〉〈ω′| (11)

where Vωω′ = 〈ω|V |ω′〉 is a regular function of the variables ω and ω′. For simplicity we
assume that H also has the continuous spectrum [0,∞).

Since the time evolution of the system is determined by the Hamiltonian H, it is convenient
to change to a representation in terms of the eigenvectors of H (the ‘H representation’). For
each eigenvector |ω〉 of the HamiltonianH0 there is an eigenvector |ω+〉 of the Hamiltonian H
as given by the Lippmann–Schwinger equation, i.e.

|ω+〉 = |ω〉 +
1

ω + i0 −H
V |ω〉 (12)

The corresponding ‘bra’ is given by

〈ω+| = 〈ω| + 〈ω|V 1

ω − i0 −H
(13)
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Figure 1. Complex contour on the lower complex energy plane used in our evaluation of integrals.
The energy z0 is the pole assumed to be simple.

We are going to consider a physical system for which the vectors |ω+〉 also generate a
complete orthonormal basis

〈ω+|ω′+〉 = δ(ω − ω′) H =
∫

dωω|ω+〉〈ω+| I =
∫

dω |ω+〉〈ω+|. (14)

The probability that a pure state |ϕ〉 is in the pure state |ψ〉 at time t is

P(t) = |A(t)|2 A(t) = 〈ψ| exp(−iHt)|ϕ〉 =
∫ ∞

0
dω′ exp(−iω′t)〈ψ|ω′+〉〈ω′+|ϕ〉.

(15)

Let us assume that the analytic extension to the lower complex half plane of the variable
ω′ in the integrand of the previous expression has a simple pole at z = z0 in the lower complex
half plane, very close to the positive real axis. In this case the integral in equation (15)
will have a dominant contribution from the values of ω′ close to ω0 ≡ Re(z0). To describe
these resonant effects, it is convenient to deform the domain of integration [0,+∞) for ω′

to a convenient curve in the complex plane7. To perform this deformation, we need the
analytic extensions |z〉, 〈 z̃|, |z+〉 and 〈 z̃+|, of the eigenvectors |ω〉, 〈ω|, |ω+〉 and 〈ω+|. All
these objects can be considered only as functionals acting over the usual wave vectors. That
is, if ϕ : [0,+∞) → C 8 is a wavefunction in the H0 representation, the ‘bra’ 〈ω| is a linear
functional whose action on ϕ is defined by9

〈ω|ϕ〉 ≡ ϕ(ω). (16)

Since our objects will be mainly complex, we have to extend the functionals above to the
complex plane. In the domain of the complex plane for which the analytic extension of the
function ϕ is well behaved, we define the linear functional 〈 z̃| through the equation

〈 z̃|ϕ〉 ≡ ϕ(z) (17)

i.e. the functional 〈 z̃| acting on the function ϕ : [0,+∞) → C gives the value of the analytic
extension of the function ϕ at point z of the complex plane.

We are going to choose ϕ : [0,+∞) → C in the class of Schwartz functions having a
well-defined analytic extension to the domain D� between [0,+∞) and the curve � in the
lower complex half plane (see figure 1).
7 The contour deformation is equivalent to the method of analytic dilations [11] if the curve is a straight line in the
lower complex half plane and the analytic extensions ϕ(z) of the wavefunctions ϕ(ω) in the ‘H0 representation’ go
to zero for |z| → ∞.
8

C denotes the complex plane.
9 Through this paper, following the standard tradition in physical literature, the Dirac bra–ket notation is used
to denote Hilbert space products such as 〈ψ |ϕ〉 .= ∫ ∞

0 dωψ(ω)ϕ(ω), the left action of linear functionals such as
〈ω|ϕ〉 .= ϕ(ω), or the right action of antilinear functionals such as 〈ψ |ω〉 .= ψ(ω). (For details see [30, 31].)
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Figure 2. Complex contour on the upper complex energy plane used in our evaluation of integrals.
The energy z0 is the pole assumed to be simple.

Analogously, the ‘ket’ |ω〉 is an antilinear functional defined by

〈ψ|ω〉 ≡ ψ(ω) (18)

where the function ψ : [0,+∞) → C is defined by ψ(ω) ≡ ψ(ω).
In the domain of the complex plane for which the analytic extension of the function ψ is

well defined, we define the antilinear functional |z〉 through the relation

〈ψ|z〉 ≡ ψ(z) = ψ(z) (19)

i.e. the functional |z〉, acting on the functionψ : [0,+∞) → C, gives the value of the analytic
extension of the function ψ at point z of the complex plane.

We are interested in functionsψ : [0,+∞) → C in the class of Schwartz functions having
well-defined analytic extensions to the domainD� . Therefore,ψ : [0,+∞) → C should have
a well-defined analytic extension in the domain D� between R

+ and the curve � in the upper
complex half plane (see figure 2).

In appendix A we prove that the functionals 〈z| and |̃z〉, defined by the usual relations

〈z|ϕ〉 ≡ 〈ϕ|z〉 〈ϕ |̃z 〉 ≡ 〈 z̃|ϕ〉 (20)

verify
〈z| = 〈 z̃| |̃z 〉 = |z〉. (21)

From these results it follows that 〈 z̃| = 〈z| �= 〈z|, i.e. if z is a complex number then
〈 z̃| is not the adjoint of |z〉. This property justifies the use of a tilde (∼) in the definition
given in equation (17), which would not be necessary for real values z = ω ∈ [0,+∞) where
〈 ω̃| = 〈ω| = 〈ω|.

The resolvent R(z) ≡ (z − H)−1 is an analytic function10 of the complex variable z,
except for a cut in [0,+∞). According to equations (12) and (13) we have

|ω+〉 = |ω〉 + R(ω + i0)V |ω〉 〈ω+| = 〈ω| + 〈ω|VR(ω − i0). (22)

Therefore the analytic extensions of |ω+〉 and 〈ω+| involve the analytic extensions of the
resolvent. We define the analytic extension R+(z) (R−(z)) of the resolvent R(z) from the
upper (lower) to the lower (upper) complex half plane as11

R+(z) ≡
{
R(z) z ∈ C

+ .= {z ∈ C/ Im(z) > 0}
conts∈C

+→zR(s) z ∈ C
− .= {z ∈ C/ Im(z) < 0} (23)

10 More precisely: it is analytical in the so-called physical sheet of the corresponding Riemann surface but it has
poles in the other sheet, that is in the so-called unphysical sheet.
11 We use the notation conts∈C

+→z to indicate the analytic continuation of a function defined in a point s of the
upper plane to a point z (which may be in the lower plane). The analytic extension of an operator depending on
a complex variable z should always be understood in the weak sense. For example, 〈ϕ|conts∈C+→zR(s)|ψ〉 ≡
conts∈C+→z〈ϕ|R(s)|ψ〉, where ϕ and ψ are suitable test functions.
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R−(z) ≡
{

conts∈C
−→zR(s) z ∈ C

+

R(z) z ∈ C
− . (24)

From the definitions of |ω+〉 and 〈ω+| given in equations (22) and of the analytic extensions
R+(z) and R−(z) of the resolvent given in equations (23) and (24), we can obtain the
corresponding analytic extensions of the Lippmann–Schwinger equations

|z+〉 = |z〉 + R+(z)V |z〉 〈 z̃+| = 〈 z̃| + 〈 z̃|VR−(z). (25)

In appendix A we prove that the functionals 〈z+| and |̃z+〉, defined by the relations
〈z+|ϕ〉 ≡ 〈ϕ|z+〉 and 〈ϕ |̃z+〉 ≡ 〈 z̃+|ϕ〉, satisfy

〈z+| = 〈 z̃+| |̃z+〉 = |z +〉. (26)

Since we assume that R+(z) has a simple pole at z = z0 in the lower complex half
plane, R−(z) has a simple pole at z = z0 in the upper complex half plane (see appendix B).
Correspondingly, |z+〉 has a pole at z0 and 〈 z̃+| has a pole at z0.

In order to define the Gamov vectors we will make a contour deformation. Going back to
equation (15), we can deform the integral path over [0,+∞) corresponding to the real variable
ω′ into the curve C ∪ � in the lower complex half plane (see figure 1). Taking into account
the simple pole at z0, the amplitude to find the state ϕ(t) in the state ψ becomes

A(t) = 〈ψ| exp(−iHt)|ϕ〉 =
∮
C

dz′ exp(−iz′t)〈ψ|z′+〉〈 z̃′+|ϕ〉

+
∫
�

dz′ exp(−iz′t)〈ψ|z′+〉〈 z̃′+|ϕ〉 (27)

and one obtains the equivalent well-defined equation

A(t) = 〈ψ| exp(−iHt)|ϕ〉 = exp(−iz0t)〈ψ|f0〉〈f̃ 0|ϕ〉 +
∫
�

dz′ exp(−iz′t)〈ψ|fz′ 〉〈f̃ z′ |ϕ〉
(28)

where

〈f̃ 0|ϕ〉 ≡ contω′→z0〈ω′+|ϕ〉
〈ψ|f0〉 ≡ (−2π i) contω′→z0(ω

′ − z0)〈ψ|ω′+〉
(29)

〈f̃z′ |ϕ〉 ≡ contω′→z′ 〈ω′+|ϕ〉
〈ψ|fz′ 〉 ≡ contω′→z′ 〈ψ|ω′+〉 z′ ∈ �.

The complex conjugate amplitude is given by

A(t) = 〈ϕ| exp(iHt)|ψ〉 = exp(iz0t)〈ϕ|f̃ 0〉〈f0|ψ〉 +
∫
�

dz exp(+izt)〈ϕ|f̃ z〉〈fz|ψ〉 (30)

where

〈ϕ|f̃ 0〉 ≡ contω→z0〈ϕ|ω+〉
〈f0|ψ〉 ≡ (+2π i) contω→z0(ω − z0)〈ω+|ψ〉

(31)
〈ϕ|f̃ z〉 ≡ contω→z〈ϕ|ω+〉
〈fz|ψ〉 ≡ contω→z〈ω+|ψ〉 z ∈ �.

From equations (29) and (31) it is easy to deduce the duality properties 〈f̃ 0|ϕ〉 = 〈ϕ|f̃ 0〉
and 〈ψ|f0〉 = 〈f0|ψ〉. Note that there is no duality relation between |f0〉 and 〈f̃0|, nor between
|f̃ 0〉 and 〈f0|.
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One can show (see appendix C) that the functionals defined in equations (29) and (31) are
generalized eigenvectors of the Hamiltonian with complex eigenvalues, i.e.

〈f̃ 0|H = z0〈f̃ 0| H |f0〉 = z0|f0〉 〈f̃ z′ |H = z′〈f̃ z′ | H |fz′ 〉 = z′|fz′ 〉 z′ ∈ �.
H |f̃ 0〉 = z0|f̃ 0〉 〈f0|H = z0〈f0| H |f̃ z〉 = z|f̃ z〉 〈fz|H = z〈fz| z ∈ �. (32)

Therefore the identity can be written as12

I = |f0〉〈f̃ 0| +
∫
�

dz |fz〉〈f̃ z|. (33)

The generalized eigenvectors of H with the eigenvalues z0 and z0, associated with the simple
poles of the analytic extensions of the resolvent, are usually called ‘Gamov vectors’.

It is important to note that while the amplitude A(t) above is well defined in coordinate
representation, the Gamov vectors diverge for growing values of the coordinates. For instance,
in the case of a one-dimensional problem in [0,+∞) where the potential V has a compact
support, one obtains13

〈x|f0〉 ∼ exp(+i
√
z0x) 〈f̃ 0|x〉 ∼ exp(+i

√
z0x) (34)

i.e. an oscillating function modulated by a growing exponential. Therefore, if one attempts
to define the ‘norm’ of the functional |f0〉 by 〈f0|f0〉 ≡ ∫ ∞

0 dx〈f0|x〉〈x|f0〉, the exponential
growing integrand would give an infinite value. The energy 〈f0|H |f0〉 is also divergent
and the internal product 〈f̃ 0|f0〉 is not defined due to the oscillatory and diverging terms.
These quantities are mathematically flawed since they are ‘functionals of functionals’. In
spite of this strong shortcoming they can be regularized and computed with the recipes
quoted in the introduction. Since these methods suffer from the uncertainties that we have
discussed above we will use a different approach. Expressions like 〈ψ|f0〉 or 〈f̃ 0|ϕ〉 are
generally well defined, at least for well-behaved ‘test vectors’ ϕ andψ . For these test vectors,
equation (28) gives a well-defined complex spectral decomposition of the transition amplitude
A(t). The survival amplitude can be obtained from equation (28) with ϕ = ψ . Moreover,
if |Im z0| � |Re z0|, it can be proved that for intermediate values of time, the complex
eigenvalue z0 gives the main contribution to the survival probability of a pure state [25], i.e.
|〈ϕ| exp(−iHt)|ϕ〉|2 ∼= exp(−�t), where � ≡ 2 |Im z0|.

We have succeeded in defining Gamov vectors as functionals, but this is not enough to
remove the problems associated with these vectors. Using equations (15), (28) and (30) we
can write the probability P(t) of finding the system in the pure state ψ at time t, if it was
initially in the pure state ϕ

P(t) = 〈ϕ| exp(+ iHt)|ψ〉〈ψ| exp(−iHt)|ϕ〉
= exp[i(z0 − z0)t]〈ϕ|f̃ 0〉〈f0|ψ〉〈ψ|f0〉〈f̃ 0|ϕ〉

+
∫
�

dz′ exp[i(z0 − z′)t]〈ϕ|f̃ 0〉〈f0|ψ〉〈ψ|fz′ 〉〈f̃ z′ |ϕ〉

+
∫
�

dz exp[i(z− z0)t]〈ϕ|f̃ z〉〈fz|ψ〉〈ψ|f0〉〈f̃ 0|ϕ〉

+
∫
�

dz
∫
�

dz′ exp[i(z− z′)t]〈ϕ|f̃ z〉〈fz|ψ〉〈ψ|fz′ 〉〈f̃ z′ |ϕ〉. (35)

The probability P(t) is related to the projector
ψ
.= |ψ〉〈ψ| by the expression

P(t) = 〈ϕ| exp(+iHt)
ψ exp(−iHt)|ϕ〉 (36)
12 This is the partition of the identity within this formalism. It follows that |f 〉 and 〈f̃ | are the vectors of a
‘biorthonormal’ basis. From this structure it follows that the ‘natural’ norm is 〈f̃ |f 〉, as in [9–11]. This solution
deserves the criticism under equation (7).
13 We consider the square roots for which Im(

√
z0) < 0 and Im(

√
z0) > 0.
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One is tempted to generalize to more general cases the expression given in equation (35),
which is valid to compute transition probabilities between normalized pure states. For
example, we may try to compute the probability of finding the particle at a distance
greater than R at time t (this is equivalent to having detected the particle passing the
point R before time t). To compute this probability using Gamov vectors, we may try
to replace in equations (35) and (36) the projector 
ψ = |ψ〉〈ψ| onto the pure state
ψ, by the projector 
[R,∞) ≡ ∫ ∞

R
dx |x〉〈x| onto a set of states localized at a distance

greater than R, e.g. outside the potential barrier which produces the resonance (see also
section 6). But then we find a new and unexpected problem: divergent terms appear. For
instance 〈f0|
[R,∞)|f0〉 = ∫ ∞

R
dx〈f0|x〉〈x|f0〉 = ∞, due to the exponentially growing factor

〈f0|x〉〈x|f0〉 ∼ exp(+i[
√
z0 − √

z0]x). The same kinds of troubles appear if one tries to
compute the conserved total probability 1 = 〈ϕt |ϕt〉 = 〈ϕ| exp(+iHt)I exp(−iHt)|ϕ〉 by
replacing the projector
ψ by I = ∫ ∞

0 dx |x〉〈x| in equation (35).
We thus realize that the use of Gamov vectors to compute the time evolution of mean

values for observables which are not simple projections onto a normalizable pure state, cannot
be a straightforward generalization of the expression given in equation (35). This implies that
if one wants to include resonances in the time evolution of observables a different approach is
needed.

In the rest of this paper we will introduce a suitable formalism (cf [20, 21, 26]) to deal
with general observables and to compute their time evolution using complex eigenvalues. We
will also give a precise meaning to the ‘energy’ and the ‘norm’ of ‘Gamov states’ revealing
their real nature.

3. Generalized states and observables

The expressions given in equations (9)–(11) for the operators I,H0 and H, suggest that it is
necessary to consider a general form for the self-adjoint operators representing observables of
the system, namely

O =
∫

dωOω|ω〉〈ω| +
∫

dω
∫

dω′Oωω′ |ω〉〈ω′| (37)

whereOω = Oω andOωω′ = Oω′ω.
The first term in this equation can be written as

∫
dω

∫
dω′Oωδ(ω− ω′)|ω〉〈ω′|. Since it

contains a Dirac delta, we will call it the singular term. The second term has no singularity
becauseOωω′ is a regular function, and therefore we call this the regular term.

One cannot avoid the introduction of the singular term to get diagonal continuous matrices,
e.g. to explain decoherence processes [22, 23]. For us terms like this will be essential in the
formalism of sections 4 and 5. The most serious problem with the singular term is that
often one faces situations where multiplications of Dirac deltas appear. It is to avoid such
multiplications that the methods of [20, 21, 26] have been designed. However, in our formalism
the Dirac deltas are avoided due to the introduction of the density operators. To see this let
|ψa〉 be a pure state vector and pa the probability of the quantum system to be in this pure
state (a = 1, 2, . . . ,

∑
a pa = 1, 〈ψa|ψa〉 = 1). In this case, the state of the system can be

represented by the density operator

ρ ≡
∑
a

pa|ψa〉〈ψa |. (38)

The mean value of an observable represented by an operator O of the form given in
equation (37) is
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〈O〉ρ = Tr(ρO) =
∫

dω

[∑
a

pa〈ω|ψa〉〈ψa |ω〉
]
Oω

+
∫

dω
∫

dω′
[∑

a

pa〈ω′|ψa〉〈ψa |ω〉
]
Oωω′ . (39)

Defining

ρω ≡
∑
a

pa〈ω|ψa〉〈ψa |ω〉 ρωω′ ≡
∑
a

pa〈ω′|ψa〉〈ψa |ω〉 (40)

the mean value of the operator O in the state ρ can be written in the compact form

〈O〉ρ =
∫

dωρωOω +
∫

dω
∫

dω′ ρωω′Oωω′ . (41)

But from a more general point of view, ρω and ρωω′ can be considered as the ‘components’
of a linear functional (ρ|, acting on the observable |O) which is defined by its own
‘components’ Oω and Oωω′ . As we will see, in this way we can define ‘generalized states’
that contain the density operator of equation (38) as a particular case. The action of the state
functional on the observable provides the mean value 〈O〉ρ = (ρ|O). In this approach, it is
convenient to define the ‘generalized observables’

|ω) ≡ |ω〉〈ω| |ωω′) ≡ |ω〉〈ω′| (42)

in such a way that the observable O can be written as

|O) ≡ O =
∫

dωOω|ω) +
∫

dω
∫

dω′Oωω′ |ωω′) (43)

and therefore (|ω), |ω,ω′)) is the basis of the space of the observables. It is also useful to
define the generalized states (ω̃| and (ω̃ω′| satisfying the relations

(ω̃|O) ≡ Oω (ω̃ω′|O) ≡ Oωω′ . (44)

It should be emphasized that according to these definitions, (ω̃| �= (|ω〉〈ω|)† and (ω̃ω′| �=
(|ω〉〈ω′|)†, in contrast to the case of discrete spectra. Using the generalized states defined in
equations (44), the state functional reads

(ρ| =
∫

dω ρω(ω̃| +
∫

dω
∫

dω′ ρωω′(ω̃ω′|. (45)

The generalized states (ω̃| and (ω̃ω′| form a basis for the dual of the observable space, namely
the state space.

The generalized states (ω̃|, (ω̃ω′| and observables |ω), |ωω′) form a complete
biorthonormal system to describe observables and states of the form given in equations (43)
and (45). It is straightforward to verify the orthogonality and completeness conditions

(ω̃|ω′) = δ(ω − ω′) (ω̃ω′|εε′) = δ(ω − ε)δ(ω′ − ε′) (ω̃|εε′) = (ω̃ω′|ε) = 0

(46)

(ρ|I = (ρ|, I|O) = |O) (47)

where I is the identity superoperator given by

I ≡
∫

dω |ω)(ω̃| +
∫

dω
∫

dω′ |ωω′)(ω̃ω′| (48)

which of course differs from the identity operator I = ∫
dω |ω〉〈ω|.
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Up to this point, we have only provided an alternative mathematical framework for the
description of states that can be also described in terms of the well-known density operator
given in equation (38). However, we will show in what follows that the spectral decomposition
of the time evolution of a quantum system with continuous spectrum includes generalized states
which are functionals like those of equation (45), and which cannot be described by the usual
density operators. The well-known conditions Trρ = 1 and ρ† = ρ for the density operator,
must be replaced in this formalism by the conditions of total probability and reality on the
state functionals (see [20] for details)

(ρ|I) = 1 (ρ|O†) = (ρ|O). (49)

From these two conditions one learns that the components of the states should satisfy∫
dω ρω = 1, ρω = ρω and ρω′ω = ρωω′ . The positivity condition remains the usual one,

i.e. ρω = ρω � 0.
The time evolution of the state functionals is obtained from the equation

(ρt |O) ≡ (ρ0|Ot) = (ρ0| exp(+iHt)O exp(−iHt)) (50)

relating Schrödinger and Heisenberg representations.

4. Generalized real spectral decomposition of the time evolution

If we compute the matrix elements of an operator O of the form given in equation (37) in
the H0 representation, we obtain 〈ω|O|ω′〉 = δ(ω − ω′)Oω + Oωω′ (where the singular and
the regular terms naturally appear). If one uses the H representation, the matrix element
〈ω+|O|ω′+〉 also include a singular term δ(ω − ω′)Oω, and therefore there is a term of the
form

∫
dωOω|ω+〉〈ω+| in the operator O. This term is time independent in the Heisenberg

representation.
Since Gamov vectors are exponentially decaying states they cannot be contained in the

time-independent term. We therefore separate the time independent from the time-dependent
part of the observable, hoping to find the Gamov vectors in the time-dependent part. To do
this we define the invariant and the non-invariant or ‘fluctuating’ parts of O as follows

Oinv
.=

∫
dωOω|ω+〉〈ω+| Ofluc

.= O −Oinv. (51)

The matrix elements of Ofluc are

〈ω+|Ofluc|ω′+〉 =
∫

dε [〈ω+|ε〉〈ε|ω′+〉 − δ(ω − ε)δ(ε − ω′)](ε̃|O)

+
∫

dε
∫

dε′ 〈ω+|ε〉〈ε′|ω′+〉( ˜εε′|O). (52)

The time-dependent contribution to the mean value is given by the fluctuating part since
it is

〈O〉t = (ρ0| e+iHtO e−iHt)

= (ρ0|Oinv) +
(
ρ0| e+iHtOfluc e−iHt)

=
∫

dω (ρ0‖ω+〉〈ω+|)Oω +
∫

dω
∫

dω′ ei(ω−ω′)t (ρ0‖ω+〉〈ω′+|)〈ω+|Ofluc|ω′+〉. (53)
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Defining the following generalized states and observables

|ω) ≡ |ω+〉〈ω+|
(̃ω| ≡ (ω̃|

(54)|ωω′) ≡ |ω+〉〈ω′+|
(̃ωω′ | ≡

∫
dε [〈ω+|ε〉〈ε|ω′+〉 − δ(ω − ε)δ(ε − ω′)](ε̃| +

∫
dε

∫
dε′ 〈ω+|ε〉〈ε′|ω′+〉(ε̃ε′|

and using equations (51)–(54), one gets the compact form

〈O〉t = (ρt |O) =
∫

dω (ρ0|ω)(̃ω|O) +
∫

dω
∫

dω′ ei(ω−ω′)t (ρ0|ωω′)(̃ωω′ |O). (55)

From this last expression we can obtain the time dependence of the state functional (in the
Schrödinger representation):

(ρt | =
∫

dω (ρ0|ω)(̃ω| +
∫

dω
∫

dω′ ei(ω−ω′)t (ρ0|ωω′)(̃ωω′ |. (56)

In the next section we will see that the Gamov states are contained in the analytic continuation
of the last term.

The generalized states and observables defined in equations (54) have interesting
properties:

(i) They form a complete biorthogonal system for observables and states: this is rather
straightforward, since

(̃ω|ω′) = δ(ω − ω′) (̃ωω′ |εε′) = δ(ω − ε)δ(ω′ − ε′)
(̃ω|εε′) = (̃εε′ |ω′) = 0. (57)

The identity superoperator I, already defined in equation (48), can be written in the form

I =
∫

dω |ω)(̃ω| +
∫

dω
∫

dω′ |ωω′)(̃ωω′ |. (58)

(ii) They provide the spectral decomposition of the time evolution generator: in the Heisenberg
representation the time evolution of an observable O of the form given in equation (37)
is given by Ot = exp(+iHt)O exp(−iHt) = exp(+iLt)O , where L is the Liouville–
von Neumann superoperator, defined by LO ≡ HO −OH . It is

L =
∫

dω
∫

dω′ (ω − ω′)|ωω′)(̃ωω′ |. (59)

Therefore |ω) ((̃ω|) is a right (left) eigenvector of L with zero eigenvalue, and |ωω′)

((̃ωω′ |) is a right (left) eigenvector of L with eigenvalue (ω − ω′). Gamov states will
also be eigenvectors of L but with complex eigenvalues.

(iii) The generalized states (̃ω| and ̃ωω′ | have well-defined physical properties: any state
functional can be written as the linear combination

(ρ| = (ρ|I =
∫

dω (ρ|ω)(̃ω| +
∫

dω
∫

dω′ (ρ|ωω′)(̃ωω′ | (60)

and therefore (̃ω| and (̃ωω′ | can be considered as a basis of generalized states.
The generalized state (̃ω| satisfies

(̃ω|I) = (̃ω|
∫

dω′ |ω′〉〈ω′|) = (̃ω|
∫

dω′ |ω′)

=
∫

dω′ (ω|ω′) =
∫

dω′δ(ω − ω′) = 1 (61)
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(̃ω|H) = (̃ω|
[∫

dω′ ω′|ω′) +
∫

dω′
∫

dω′′ Vω′ω′′ |ω′ω′′)
]

=
∫

dω′ ω′(ω|ω′) +
∫

dω′
∫

dω′′ Vω′ω′′(ω|ω′ω′′)

=
∫

dω′ ω′δ(ω − ω′) = ω. (62)

Therefore (̃ω| verifies the total probability condition (̃ω|I) = 1 (the generalization
of the condition Trρ = 1 for the usual density operators). The mean value of the
energy is 〈H 〉 = (̃ω|H) = ω. Moreover, one can show that 〈Hn〉 = (

̃ω|Hn
) = ωn

(n = 1, 2, . . .), which implies 〈(H − 〈H 〉)n〉 = 0. In summary, the mean value ω of the
energy has no dispersion, and one can say that the state (̃ω| has energy ω. It is clear
from the definition that this is a generalized state which cannot be represented, neither by
a normalized wavefunction nor by a density operator.

The generalized state (̃ωω′ | satisfies

(̃ωω′ |I) = (̃ωω′ |
∫

dε′|ε′)

=
∫

dε [〈ω+|ε〉〈ε|ω′+〉 − δ(ω − ε)δ(ε − ω′)](ε|
∫

dε′ |ε′)

=
∫

dε [〈ω+|ε〉〈ε|ω′+〉 − δ(ω − ε)δ(ε − ω′)]

=
∫

dε 〈ω+|ε〉〈ε|ω′+〉 −
∫

dε δ(ω − ε)δ(ε − ω′)

= δ(ω − ω′)− δ(ω − ω′) = 0. (63)

(̃ωω′ |H) =
∫

dε [〈ω+|ε〉〈ε|ω′+〉 − δ(ω − ε)δ(ε − ω′)]ε

+
∫

dε
∫

dε′ 〈ω+|ε〉〈ε′|ω′+〉Vεε′

= 〈ω+|
[∫

dε ε|ε〉〈ε| +
∫

dε
∫

dε′ Vεε′ |ε〉〈ε′|
]

|ω′+〉 − δ(ω − ω′)ω

= 〈ω+|H |ω′+〉 − δ(ω − ω′)ω = 0. (64)

The generalized states (̃ωω′ | of the real spectral decomposition satisfy (̃ωω′ |I) = 0
and (̃ωω′ |H) = 0, i.e. they have zero values of the energy and the generalized trace.
However, the (̃ωω′ | are very important, because they provide the time-dependent part of
any physical state functional (see equations (55) and (56)). Gamov vectors will inherit
these rigorous mathematical properties as we will see in the next section. This is the
clue that will yield the real nature of Gamov states. The energy and the non-zero part of
the generalized trace is carried out by the time-independent components (̃ω|, satisfying
(̃ω|H) = ω and (̃ω|I) = 1. Therefore both (̃ω| and (̃ωω′ | components are physically
relevant parts of a state functional.

(iv) At very long times, i.e. asymptotically in time, they provide a suitable representation: if
(ρ0|ωω′) and (̃ωω′ |O) are regular functions of the variables ω and ω′, the second factor
of the expression given in equation (55) for the time-dependent mean value 〈O〉t of the
observable tends to vanish for very long times, due to the rapidly oscillating factor ei(ω−ω′)t
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inside the double integral. Therefore, we obtain limt→∞(ρt |O) = ∫
dω (ρ0|ω)(̃ω|O),

or (in the weak sense)

(ρ∞| ≡ W lim
t→∞(ρt | =

∫
dω (ρ0|ω)(̃ω|. (65)

Therefore the components (̃ωω′ | of the state are eliminated during the time evolution,
and the properties (̃ωω′ |H) = 0 and (̃ωω′ |I) = 0, discussed above, are now found to
be essential for energy and probability conservation, i.e.

〈H 〉 = (ρ0|H) = (ρt |H) = (ρ∞|H) 〈I 〉 = (ρ0|I) = (ρt |I) = (ρ∞|I) = 1. (66)

5. Generalized complex spectral decomposition of the time evolution of observables and
Gamov states

We obtained in equation (55) the spectral decomposition of the mean value of an observable,
i.e.

〈O〉t = (ρt |O) =
∫ ∞

0
dω (ρ0|ω)(̃ω|O) +

∫ ∞

0
dω

∫ ∞

0
dω′ ei(ω−ω′)t (ρ0|ωω′)(̃ωω′ |O).

(67)

We wish to deform the integral over [0,+∞) for the variable ω (ω′) into a curve in the
upper (lower) complex half plane. Therefore we need the following analytic extensions

(ρ0|zz′) ≡ contω→z contω′→z′(ρ0|ωω′) (68)

(̃zz′ |O) ≡ contω→z contω′→z′(̃ωω′ |O). (69)

Equations (25) and (54) and the assumption of a simple pole for the analytic extension
of the resolvent to the lower complex half plane, show that if z ∈ C

+ and z′ ∈ C
−, (ρ0|zz′)

is analytic and (̃zz′ |O) has simple poles for z = z0 and z′ = z0. It is therefore possible to
deform the integrals over the real variables ω and ω′ to the curves indicated in figures 2 and 1,
respectively. The following expression is obtained for the time evolution of the mean value

(ρt |O) =
∫ ∞

0
dω (ρ0|ω)(̃ω|O) + ei(z0−z0)t (ρ0|00)(̃00|O)

+
∫
�

dz′ ei(z0−z′)t (ρ0|0z′)(̃0z′ |O) +
∫
�

dz ei(z−z0)t (ρ0|z0)(̃z0|O)

+
∫
�

dz
∫
�

dz′ ei(z−z′)t (ρ0|zz′)(̃zz′ |O) (70)

where equation (67) was used and the following functionals were introduced:

(ρ0|00) ≡ contω→z0 contω′→z0(ρ0|ωω′) = (ρ0‖f̃ 0〉〈f̃ 0|)
(̃00|O) ≡ contω→z0 contω′→z0 4π2(ω − z0)(ω

′ − z0)(̃ωω′ |O) = 〈f0|(O −Oinv)|f0〉
(ρ0|0z′) ≡ contω→z0 contω′→z′(ρ0|ωω′) = (ρ0‖f̃ 0〉〈f̃ z′ |)
(̃0z′ |O) ≡ contω→z0 contω′→z′(2π i)(ω − z0)(̃ωω′ |O) = 〈f0|(O −Oinv)|fz′ 〉

(71)
(ρ0|z0) ≡ contω→z contω′→z0(ρ0|ωω′) = (ρ0‖f̃ z〉〈f̃ 0|)
(̃z0|O) ≡ contω→z contω′→z0(−2π i)(ω′ − z0)(̃ωω′ |O) = 〈fz|(O −Oinv)|f0〉
(ρ0|zz′) ≡ contω→z contω′→z′(ρ0|ωω′) = (ρ0‖f̃ z〉〈f̃ z′ |)
(̃zz′ |O) ≡ contω→z contω′→z′(̃ωω′ |O) = 〈fz|(O −Oinv)|fz′ 〉.
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It is important to note that in the definitions of these functionals the analytic continuations
should be understood in the weak sense, i.e. they must be performed after the application of
the functionals depending on the real parameters ω and ω′ to suitable test functions. This is
clear from the fact that the new spectral decomposition given in equation (70) was obtained
using the Cauchy theorem in equation (67).

From equation (70) we obtain the time dependence of a state functional through the
complex spectral decomposition

(ρt | =
∫ ∞

0
dω (ρ0|ω)(̃ω| + ei(z0−z0)t (ρ0|00)(̃00| +

∫
�

dz ei(z−z0)t (ρ0|z0)(̃z0|

+
∫
�

dz ei(z−z0)t (ρ0|z0)(̃z0| +
∫
�

dz
∫
�

dz′ ei(z−z′)t (ρ0|zz′)(̃zz′ |. (72)

Equations (70) and (72) provide an alternative spectral decomposition to that given by
equation (67), where the resonances at z0 and z0 explicitly appear. Since z0 − z0 = −2i Im z0,
and by definition Im z0 < 0, (̃00| is an exponentially decaying mode and therefore a
generalized Gamov state. This decomposition has the same properties as that in the previous
section, namely14

(i) They form a basis for observables and states: the identity superoperator I can be written
in the form

I =
∫

dω |ω)(̃ω| + |00)(̃00| +
∫
�

dz′ |0z′)(̃0z′ | +
∫
�

dz |z0)(̃z0|

+
∫
�

dz
∫
�′

dz′ |zz′)(̃zz′ |. (74)

(ii) They provide the spectral decomposition of the time evolution generator:

L = (z0 − z0)|00)(̃00| + (z0 − z′)
∫
�

dz′ |0z′)(̃0z′ | +
∫
�

dz (z− z0)|z0)(̃z0|

+
∫
�

dz
∫
�

dz′ (z − z′)|zz′)(̃zz′ |. (75)

Therefore |00) ((̃00|) is a right (left) eigenvector of L with eigenvalue z0 − z0 =
−2i Im z0, |0z′)((̃0z′ |) is a right (left) eigenvector of L with eigenvalue (z0 − z′), |z0)

((̃z0|) is a right (left) eigenvector of L with eigenvalue (z − z0), and |zz′) ((̃zz′ |) is
a right (left) eigenvector of L with eigenvalue (z − z′). Gamov state (̃00| will give the
exponentially decaying term of the evolution.

(iii) The generalized states have well-defined physical properties: we have proved in the
previous section that (̃ωω′ |H) = (̃ωω′ |I) = 0. This property is also verified by the
new generalized states (̃00|, (̃0z′ |, (̃z0| and (̃zz′ |, as they are obtained by analytic
extensions of the functional (̃ωω′ | (the analytic extension of zero is zero!)15. In spite of
the fact that these functionals have zero value for the energy and the generalized trace,
they are physically relevant because they expand the time-dependent part of any physical
state in the complex spectral decomposition (see equations (70) and (72))

(iv) They provide a suitable representation to describe the asymptotic (in time) behaviour of
a state: as in the previous section, only the first term of equation (72) remains when
t → ∞, and we also obtainW limt→∞(ρt | = ∫

dω(ρ0|ω)(̃ω|.
14 It can be proved that

(̃ω|ω′ ) = δ(ω− ω′) (̃00|00) = 1 (̃ω|00) = (̃00|ω′ ) = 0, etc. (73)

In particular (̃00|00) = 1 implies 〈f̃ 0|f0〉 = 1, which are the usual results quoted in the literature. But we prefer
not to use these and similar equations because they are not rigorous and are indeed unnecessary.
15 The rigorous property (̃00|I ) = 0 substitutes in our formalism for the dubious one 〈f0|f0〉 = 0.
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6. Application: one-dimensional potential barrier

In this section we will apply the formalism presented above to a realistic case. We will first
derive general expressions for the probability of a particle to penetrate a barrier. We thus
consider an initially pure state |ϕ〉 localized inside the potential barrier. The probability to find
the particle at a distance larger than a given value R at time t is given by (ρt |
[R,∞)), where


[R,∞) =
∫ ∞

R

dx |x〉〈x| =
∫ ∞

0
dx |x〉〈x| −

∫ R

0
dx |x〉〈x|. (76)

In this expression, the vector |x〉 represents an eigenvector of the coordinate operator with
eigenvalue x. Comparing with the decompositionO = Oinv +Ofluc given in equation (51) we
obtain


inv
[R,∞) = I =

∫
dω |ω+〉〈ω+| =

∫
dω |ω〉〈ω| =

∫
dx |x〉〈x|


fluc
[R,∞) = −

∫ R

0
dx |x〉〈x| (77)

and therefore

(̃ω|
[R,∞)) = (ω|
[R,∞)) = 1

(̃ωω′ |
[R,∞)) = 〈ω+|
fluc
[R,∞)|ω′+〉 = −

∫ R

0
dx 〈ω+|x〉〈x|ω′+〉. (78)

Initially the system is assumed to be in a pure state ρ0 = |ϕ〉〈ϕ|, and therefore (ρ0|O) =
〈ϕ|O|ϕ〉. One therefore has

(ρ0|ω) = (ρ0‖ω+〉〈ω+|) = 〈ϕ|ω+〉〈ω+|ϕ〉
(79)

(ρ0|ωω′) = (ρ0‖ω+〉〈ω′+|) = 〈ϕ|ω+〉〈ω′+|ϕ〉.
Replacing equations (78) and (79) in the expression given in equation (55) for the time
evolution of the mean value, we obtain

(ρ(t)|
[R,∞)) = 〈
[R,∞)〉t
= 1 −

∫ R

0
dx

∫
dω

∫
dω′ exp[i(ω − ω′)t]〈ϕ|ω+〉〈ω+|x〉〈x|ω′+〉〈ω′+|ϕ〉.

(80)

If for t = 0 the particle is located at x < R this last expression satisfies

〈
[R,∞)〉t=0 = 0 lim
t→∞〈
[R,∞)〉t = 1 (81)

i.e. the probability of finding the particle at x > R and t = 0 is zero and it will be 1
asymptotically, i.e. for large values of t.

Since the transition of the probability 〈
[R,∞)〉t from zero to 1 may be dominated by an
exponential behaviour, it may be convenient to use the complex spectral decomposition given
in equation ( 70)

〈
[R,∞)〉t = 1 − ei(z0−z0)t〈ϕ|f̃ 0〉〈f̃ 0|ϕ〉
∫ R

0
dx 〈f0|x〉〈x|f0〉

−
∫
�

dz′ ei(z0−z′)t〈ϕ|f̃ 0〉〈f̃ z′ |ϕ〉
∫ R

0
dx 〈f0|x〉〈x|fz′ 〉

−
∫
�

dz ei(z−z0)t〈ϕ|f̃ z〉〈f̃ 0|ϕ〉
∫ R

0
dx 〈fz|x〉〈x|f0〉

−
∫
�

dz
∫
�

dz′ ei(z−z′)t〈ϕ|f̃ z〉〈f̃ z′ |ϕ〉
∫ R

0
dx 〈fz|x〉〈x|fz′ 〉. (82)
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Figure 3. Real part of the Gamov function G(r) versus the radius corresponding to the potential
discussed in the text. The dots are the values calculated within our formalism.

This is a well-defined expression, free of any divergent term and fully within the framework
of quantum mechanics. Yet, it contains all the advantages of treatments where the Gamov
vectors are included [13, 14, 17].

It is interesting to see whether the diverging Gamov function, normalized according to
the prescriptions that have been proposed so far (see, e.g., [6, 9, 10]), coincides with the one
evaluated according to our formalism, i.e. equation (29). To do this we choose a realistic
case, namely a 208 Pb(2d5/2) proton state in a Woods–Saxon potential, including spin–orbit
interaction, with parameters as in [17], except the depth of the potential which we choose to
be V0 = 60 MeV. To calculate the corresponding Gamov state we used the computer code
of [27]. We obtained for the energy of this state the value z0 = (9.940 − i 0.150)MeV, i.e.
a width of � = 300 keV, which is wide considering that the corresponding mean lifetime
is T = 4.4 × 10−21 s. This state has such a very short lifetime that physically it may be
considered a part of the continuum background. This explains why the real part of the Gamov
function, which we call G(r) in figure 3, is extended rather far from the radius of the nucleus,
which in this case is 7.1 fm. Yet, the imaginary part of this function is very small in the spatial
region covered by the figure.

We evaluated the corresponding function according to our formalism searching for the
residues of the scattering function ω+(r) making use of the computer code of [28]. As seen
in figure 3, these functions coincide with each other within the precision of the figure. This is
expected, as shown in [29].

7. Conclusions

Gamov resonances have been introduced in modern physics at the very beginning of quantum
mechanics [1]. Yet, their inclusion in the theory have been hindered by many difficulties,
particularly by the fact that the Gamov functions diverge large distances and cannot be
normalized within the Hilbert space.

We have presented in this paper a mathematical structure to define the Gamov states which
do not have any of the shortcomings mentioned above. We have thus shown that the analysis
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of processes taking place in the continuum part of the quantum spectra can conveniently be
performed by introducing Gamov states. This was achieved by describing the Gamov states as
generalized states. However, isolated Gamov vectors are not by themselves physical objects
since we have shown that their ‘traces’ and energies both vanish within quantum mechanics.
Using other formalisms [7, 8, 11, 17] one succeeds in defining a norm [6, 9–11] but in a
space which is not the Hilbert space and thus outside quantum mechanics. These formalisms
have shown to be very fruitful for understanding the structure of resonances and, in general,
processes occurring in the continuum part of the quantum spectra, although one obtains
unphysical properties as complex probabilities [16, 17]. In the formalism presented here the
Gamov vectors are useful tools to construct spectral decompositions of the time evolution. In
fact these kind of mathematical objects are not an exception in scattering theory, where neither
plane waves are physical objects since their norms are not finite. Plane waves, as Gamov
vectors, do not belong to the Hilbert space, but are linear functionals on convenient Hilbert
subspaces.

For the real spectral decomposition of our formalism, the generalized states (̃ωω′ | of the
real spectral decomposition satisfy (̃ωω′ |I) = 0 and (̃ωω′ |H) = 0, i.e. they have zero values
of the energy and the generalized trace. However, the (̃ωω′ | are very important, because
they provide the time-dependent part of any physical state functional. The energy and the
non-zero part of the generalized trace is carried out by the time-independent components (̃ω|,
satisfying (̃ω|H) = ω and (̃ω|I) = 1. Therefore both (̃ω| and (̃ωω′ | components are
physically relevant parts of a state functional.

For the complex spectral decomposition, the generalized states (̃00|, (̃0z′ |, (̃z0| and
(̃zz′ |, obtained by analytic extensions of the functionals (̃ωω′ |, have also zero energy and
zero ‘trace’. They expand the time-dependent part of the state functionals.

Within our formalism Gamov states play a fundamental role in describing structures in the
continuum spectrum, i.e. resonances which appear as a natural extension of bound states. We
have shown that if a resonance is narrow enough then the imaginary part of the Gamov energy
is, as usual, related to the width of the resonance. But we have also shown that if the resonance
is wide the Gamov vector may still play an important role, although that relation wanes. In our
formalism probabilities are always real quantities which have standard quantum mechanical
meaning. Therefore we are not confronted with the problem of avoiding the inclusion of wide
resonances in the formalism, which otherwise induces large complex probabilities. Due to the
quantum mechanics framework on which our formalism is built, all resonances are treated on
the same footing.

We thus think that we have solved the age-old problem of including Gamov states properly,
from the point of view of the scattering theory, to treat quantum processes in the continuum.

Appendix A. Adjoint functionals

(i) Proof of the relation 〈z| = 〈̃z|.
Starting from the definition 〈z|ϕ〉 ≡ 〈ϕ|z〉 given in equation (20) and using equations

(17) and (19), we obtain

〈z|ϕ〉 = 〈ϕ|z〉 = ϕ(z) = ϕ(z) = 〈̃z|ϕ〉. (A1)

If these equalities hold for arbitrary ‘test vectors’ ϕ, we deduce

〈z| = 〈̃z|. (A2)
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(ii) Proof of the relation |̃z 〉 = |z〉.
Starting from the definition 〈ϕ |̃z 〉 ≡ 〈 z̃|ϕ〉 given in equation (20) and using equations

(17) and (19), we obtain

〈ϕ |̃z 〉 = 〈 z̃|ϕ〉 = ϕ(z) = ϕ(z) = 〈ϕ|z〉. (A3)

Therefore, for arbitrary ‘test vectors’ ϕ we deduce

|̃z 〉 = |z〉. (A4)

(iii) Proof of the relation 〈z+| = 〈̃z+|.
Starting from the definition 〈z+|ϕ〉 ≡ 〈ϕ|z+〉, and using equations (25), (B3) and (A2),

we obtain

〈z+|ϕ〉 = 〈ϕ|z+〉 = 〈ϕ|z〉 + 〈ϕ|R+(z)V |z〉 = 〈z|ϕ〉 + 〈z|VR−(z)|ϕ〉
= [〈̃z| + 〈̃z|VR−(z)

] |ϕ〉 = 〈̃z+|ϕ〉. (A5)

Therefore we obtain

〈z+| = 〈̃z+|. (A6)

(iv) Proof of the relation |̃z+〉 = |z+〉.
Starting from the definition 〈ϕ |̃z+〉 ≡ 〈 z̃+|ϕ〉 and using equations (25), (B3) and (A4),

we obtain

〈ϕ |̃z+〉 = 〈 z̃+|ϕ〉 = 〈 z̃|ϕ〉 + 〈 z̃|VR−(z)|ϕ〉 = 〈ϕ |̃z 〉 + 〈ϕ|R+(z)V |̃z 〉
= 〈ϕ|[|z〉 + R+(z)V |z〉] = 〈ϕ|z+〉 (A7)

and therefore

|̃z+〉 = |z+〉. (A8)

Appendix B. Properties of the analytic extensions R+(z) and R−(z) of the resolvent

In this appendix we will prove that if R+(z) has a pole at point z0, then R−(z) has a pole at
point z0.

Let us first consider z ∈ C
− (the lower half of the complex plane), and two test functions

ϕ and ψ . Then we have

〈ψ|R−(z)|ϕ〉 = conts∈C
−→z〈ψ|(s −H)−1|ϕ〉

= conts∈C
−→z〈(s −H)−1ψ|ϕ〉

= conts∈C
−→z〈ϕ|(s −H)−1ψ〉

= conts∈C
+→z〈ϕ|(s −H)−1ψ〉 = 〈ϕ|R+(z)|ψ〉. (B1)

If z ∈ C
+, we obtain

〈ψ|R−(z)|ϕ〉 = 〈ψ|R(z)|ϕ〉 = 〈R(z)†ψ|ϕ〉
= 〈R(z)ψ|ϕ〉 = 〈ϕ|R(z)ψ〉 = 〈ϕ|R+(z)|ψ〉. (B2)

From equations (B1) and (B2), we deduce the relation

〈ψ|R−(z)|ϕ〉 = 〈ϕ|R+(z)|ψ〉 for all z. (B3)

It is clear from this relation that if R+(z) has a pole at z0, then R−(z) has a pole at z0.
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Appendix C. Complex eigenvalues of the Hamiltonian

(i) Proof of the eigenvalue equation 〈f̃ 0|H = z0〈f̃ 0|.
Starting with the definition 〈f̃ 0|ϕ〉 ≡ contω′→z0〈ω′+|ϕ〉 of the vector 〈f̃ 0|, we can

replace ϕ by Hϕ to obtain

〈f̃ 0|Hϕ〉 = contω′→z0〈ω′+|Hϕ〉 = contω′→z0ω
′〈ω′+|ϕ〉

= z0 contω′→z0〈ω′+|ϕ〉 = z0〈f̃ 0|ϕ〉. (C1)

If these equalities hold for arbitrary ‘test vectors’ ϕ, we deduce

〈f̃ 0|H = z0〈f̃ 0|. (C2)

(ii) Proof of the eigenvalue equation H |f0〉 = z0|f0〉.
Starting with the definition 〈ψ|f0〉 ≡ (−2π i) contω′→z0(ω

′ − z0)〈ψ|ω′+〉 of the vector
|f0〉, we can replace ψ by Hψ to obtain

〈Hψ|f0〉 ≡ (−2π i) contω′→z0(ω
′ − z0)〈Hψ|ω′+〉

= (−2π i) contω′→z0(ω
′ − z0)ω

′〈ψ|ω′+〉
= z0(−2π i) contω′→z0(ω

′ − z0)〈ψ|ω′+〉 = z0〈ψ|f0〉. (C3)

By definition, the action of H on the generalized vector |f0〉 is defined through
the relation 〈ψ|Hf0〉 ≡ 〈H †ψ|f0〉. As the Hamiltonian is self-adjoint we have also
H †ψ = Hψ . Therefore equation (C3) gives

H |f0〉 = z0|f0〉. (C4)
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